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ABSTRACT

There are certain experimental aspects concerning the effect of mising tempera-
ture on the apparent weight of a substance which have been extensively studied. The
theoretical treatment of the kinetics of decomposition under rising temperature
conditions rests largely on a combination of equations one of which is the Arrhenios
equation. One thus has to combine the kinetic law;

dx
the Iaw describing the temperature coefficient of the rate (usually the Arrhenius
equation);

k = Af(T)

and the equation describing the imposed temperature (T in degrés Kelvin) against
time (t);

T To T ﬁf (I)

where « is the fraction decomposed, k is the sper:xﬁc rate constant, A is a constant
(the pre-exponential term in the Arrhenius equation), T, is the initial starting tempera-
ture in the rising temperature experiment, and B is the heating rate.

The combination of these three equations carries certain implications. The
Arrhenius equation is almost invariably assumed to hold over the entire temperature
range. The assumption may not hold and the most common deviation is the occurrence
of two or more linear plots when plotting log k against 1/7. It is held that this would
apply when there is a discontinuous alteration in “reaction site distribution” when a
common compensation plot of log A against E (the activaticn energy) should result.
Another matter which is essential to the calculadon is the cormrect choice of the

* Prisented at the ‘14th Confcrcncc 6n Vacuum Lhcmbalancc Tenhmqucs, Salford, 21lh—28th
September 1976. T .



294

specific reaction rate incorporated in the Arrhenius expression. It is concluded that £
and A values for solid-state decompositions are environmentally dependent and that
values calculated from rising temperature experiments should not necessarily agree
with those obtained from the more traditional isothermal experiments.

INTRODUECTION

The theoretical treatment of the kinetics of decomposition under rising tempera-
ture conditions rests largely on a combination of equations one of which is the
Arrhenius equation. The justification for the use of this equation in all solid-state
reactions without reservation is difficult but if this is accepted then the establishment
of kinetic parameters from the rising temperature technique is theoretically possible,

One thus has to combine various relationships. There is the differential form

of the kinetic iaw,
Ly )
where z is the fraction decomposed at time ¢, and f(z) is the appropriate function of
z, k is a constant which is temperature-dependent. The temperature-dependence of
the constant & is usually described by the Arrhenius equation,

k= A~ HRT 2

where k is the specific reaction rate constant, A is the pre-exponential factor, £ is the
activation energy, T is the temperature in degrees Kelvin and R is the gas constant.
The temperature programnme imposed on the system can be represented by,

T=T,+ ft €))

where T, is the initial temperature, and a lincar heating rate has been assumed with a
heating rate of f. Combination of these three equations will enable the kinetic para-
meters to be established.

In past papers, the problems atiendant on experimental aspects have been
presented especially the temperature-dependent buoyancy effects® ~3, In this paper,
problems raised in interpreting the kinetic parameters by the combination of the
above three squations are described. The algebra involved in the combination of
these equations especially the methods of integrating the data have been reviewed by
Sestdk et al . Here, the use of the Arrthenius equation is investigated, particularly the
use of the correct specific reaction rate term, and the interpretation of the mmmng
of the Arrhenius parameters discussed.

THE DEPENDENCE OF THE RATE OF DECOMPOSITION WITH TEMPERATURE

The generally recognised phenomena is that the rate of reaction is faster at
higher temperatures than at lower temperatures. This generalization is not specific
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enough to be useful and is not necessarily true. Most thermogravimetric plots show
a rate of reaction which increases initially as the temperature is raised but decreases
towards the latter stages of decomposition at the higher temperatures. One therefore
chooses a reaction rate constant so that solid-state decompositions can be represented
in the form given in eqn (l) and the temperature dependence of the constant X then
determined.

Assuming that k is defined cormrectly (see later) then one cannot necessarily
assume the correctuess of the Arrhenius expression, t.e.,

b
logk =a — - , 4
(or usually in the form given in eqn (2)) where g and b are constants. An alternative
representation would be another series expression of the form used in thermodynamics
to show the variation of the heat of reaction with temperature. To establish this latter
idea on a formal basis would give more substance to some of the integral methods of
evaluating kinetics from rising temperature methods® ~1°.

However, the Arrhenius expression is usually assumed and the point must be
made that, although many systems show a linear relationship between log k£ and 1/7,,
there are two very common deviations from this relationship found in many solid-
state decompositions. The first deviation from normal behaviour in these plots is the
existence of two or more linear regions instead of a single linear plot Another
behaviour ofien found is that the plot of log k against 1/T is a continuous curve. An
example of the first group is the oxidation of carbon samples containing metal oxide
catalysts'?- *2. An example of the last group that may be quoted is the thermal
decomposition of cadmium carbonate doped with various ions?

There are other points i notice about the Arrhenius equahon_ The first is that
the units of energy (KJ mol™!) for E only arise because the slope of the line in the
Arrhenius plot is divided by the gas constant R. The temperature coefficient for the
plot of In k against 1/T is simply reciprocal degrees. The problem also arises in solid-
state chemistry that the term “mole™ refers to a quantity which is not immedijately
apparent.

Redfern’?® has defined the activation cnergy as the average excess energy a
reactant molecule must possess in order to react. Anderson'® however prefers to
regard both the pre-exponential term A4 and the activation energy as mathematical
parameters describing the reaction on an empirical basis.

It muost be noted that, by the theory of absolute reaction rates, the constant k
in the Arrhenius equation is given by;

k=we X - ©
where £ is Planck’s constant and K+ is the equilibrium constant for the activated
complex. Then as for other equilibrium constants;
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4G* = — RTm K* E (6)
and
AG* = AH* — TAS* | %)

The terms in the Arrhenius equation may now be identified, i.e., E with AH+*
and A can be written as

T =
R 35" IR

+
~T where AS

is the entropy change associated with the change to the activated complex. Alternatively
A can be written in terms of the partition functions; i.e.,
_ RT 0©* @
T NR QO
where @+ is the complete partition function for the activated complex excluding that
for the reaction coordinate and Q is the complete partition function for the reactant.
Both forms of the equation have been utilised in solid-state reactions!®- 7.

THE TEMPERATURE-DEPENDENT FUNCTION £

In solid-state reactions the temperature-dependent function & {(eqn (1)) has not
necessarily the same meaning as in homogeneous reaction kinetics. In the latter case,
the specific reaction rate & used in the Arrhenius equation is the reaction rate for unit
concentration. Concentration terms are not present in solid-state decompositions
which are governed by the movement of a reaction interface. The definition of the
specific reaction rate in homogeneous processes is therefore represented by;

dac

5 = KO 9

where C is the concentration, such that when C = 1, then;

dC

i (10)
The analogous condition for solid-state decompositions is that;

dx

o5 =K@ ) 1)

such that when 2« = 0, then

dx
ar k A _ (11

It will be shown later that not all solid-state kinetic equations obey this simple
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concept and there may be some doubt as to the usc of the constants in Arrhenius
type equations. It is also a common practice to use the constant appearing in in-
tegrated forms of the rate expressions rather than that appearing in the differential
form which is strictly required for the Arrhenius equation.

Thus if the integrated expression is taken as;

kot = f(e) | (12)
then
k@ a3

(the subscripts indicating the integral (1) nature of the equation in which the constant
or the function appears and similarly for the difierential (D) expression) and

L=z
DR
or
ky = ny(kpy™ (15)

The constants in the integral equations and the corresponding differental
equations are only identical in certain cases. It is the constant in the differential
equation which must be used in the Arrhenius equation. If the relationship between
the two forms is:

kl = nlkD (16)

then ihe use of the integrai constant will produce the correct analytical valoe for E
but an incorrect value for 4. If the relationship is;

ky = (kY™ | a7

then the value of both E and A4 will be affected. The difference this makes can be seen
by taking a specific example, viz., . :

k" = a , ' " - @as)
and

nk® = A e EET o (20)
when 7

k= (%) A® eTRERT - S . : e (21)
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TABLE 1

EINETIC EXPRESSIONS FOR SOLID-STATE DECOMFPOSITIONS WHICH PRODUCE “ORDER™ TYPE EQUATIONS
IN THE DIFFERENTIAL FORM

Inregral form Differential form n
da X i
Kt = —In(l — a) a5 = (I — a) ;
Ki=( — ayt 92 _ k1 —ap 2
.._( (x) dr =
. da
Kt=1-—( — o)t E—=§K(1—a)* 3
_ T Ga ot
Kr=1— (1 —a) 5 =2k — o) 3
d -
Kr=1—(0 —a)? T;—:—=3Kﬂ—a)’ 3

Nates

I. The iraditional Ist and 2nd order expressions are included because experience indiczates their
occurrence i polymer degradation reactions. )

2. The form of the 1st order expression is found in many solid-state reactions with a particular type
of mechanism involved.

3. To a firsfr epproximarion all deceleratory processes may be represented by the Ist arder decay
cquation.

and the error involved by putting & directly into the Arrhenius equation is at once
apparent.

The argument can now be extended to cover the actual “form™ of the kinetic
expressions. There are of course a large number of kinelic expressions which are
based on models reflecting various combinations of nuclei appearance, reaction
interface change, and diffusion conditions. Some of these have a differential form
which allows the temperzature-dependent constant £ to meet the specific limitations
set out above which allow it io be regarded as a formal specific reaction rate constant
(see eqns (1) and (11)) but others do not meet this condition. The occurrence of
“order™ expressions in solid-state decompositions is purely coincidence and has no
special significance. Those kinetic expressions which do show an order equation in the
differential form do however meet the formal requirement just mentioned that when

x — 0, -E = k,
and these are illustrated in Table 1.

Three general types of differential equation describing the rate of decomposition
arise in solid-state chemistry. These are:
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dzx

o= ko™ _ , (22)
dx .

57 = k-2 23
and

92 = md ’

o = K=In(l —a) (24)

These may be combined into one general expression'®,

&2 — ka1 — a)(~ In (L — (25)

The form corresponding to eqn (23) has been shown to meet the formal
requirement for use in the Arrhenius equation but eqns (22) and (24) do not, and
neither does eqn (25). However, the & term in these equations although not fulfilling
the requirements for a true specific rate constant is temperature-dependent. It is still
advisable however to use the constant appearing in the differential form of the equa-
tion and to test for obedience to an Arrhenius type expression. Equations notshowing
an order dependence are shown in Table 2.

Since there are two parameters in the Arrhenius equation, both E and A should
be reported and even if the calculation is assumed to be empirical both are necessary
to enable the kinetics to be properly described. )

Possibly the easiest treatment to understand is that of Shannon. He uses an
equation based on the earlier Polanyi-Wigner treatment®?. Shannons treatment’” is
to use the activated complex theory of reaction rate kinetics when,

G () ()
k=xNr @ “P\®Er) ~AP\RT | 29)
where &, is a nominal first order type reaction rate constant (all the terms have already
been defined), which he rearranges as;

RT —E
& =22 (77) N
where,
_ | RT _ o _ ( 4s* ) ;
a= A/T\’TI_ = Q = €xp R (“8)

It is then possible to take the experimental kinetic data and use the above
equation to calculate “a”. The evidence produced by Shannon shows that, in the cases
quoted, “a’” covers a wide spectrum of values which he finds convenient to classify as;

(1) Reactions with “a’" values less than unity
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TABLE 2

DIFFERENTIAL FORMS FOR SOUID-STATE KINETIC EQUATIONS NOT SHOWING TRAIITIONAL ORDER FORM

Integral form Differenrial form m n -
Jor

iﬂ__xll_ l_l I_
d,—a( a)*(—In( ap

K Le ke —1 0 )
r = a- d! - i’
Kt = In 8= _ I 0 0
! = €x dl /]
Kt = .i": = 2K3a¥ 0 o
—a @ ¥
Kr? = e _ 3K%a? 3 0 o
=a ar = s
da
Ki=a = AR EgE 3 0 1]
_ dr
s da 3 .
Kr = —In(l — a)* & =2K(—t(l —af1 —a) 0 i !
3 da 3
Kt = [—In(1 — a)] 57 = 3Kl — a1 —a) 0 1 i
da
Kt — (1 — a)in(l — a) -dT = K(—In{l — a)? 0 0 —1

Nore
There are altiemative expressions for
= —In{1 — a}l/n. namely de/dsr = Ka®(l — a)*

Table 2 {cont.)

n m "

2 . 0.774
3 25, 0.700
4 3 0.664

5 s 0.642

a 1 0.556




301

{2) Reactions with “a’" values approximately unity
(3) Reactions with “q” values more than one. - :
_The czlculation of “z” c¢an therefore be achieved from the kinetic data as
indicated above, but by using the idea that the reaction is governed by a decomposi-
tion process at the reaction interface then the assumption of various models for the
activated complex allows “a’™ to be caiculated from spectroscopic data. In carbonate
decompositions “a,’" is less than unity in most cases (the subscript k indicating that
its calculation is based on kinetic experimeats whilst a subscript s indicates that the
calculation owes ils origin {0 spectroscopic data). The spectroscopic estimate of @+
can be made on the assumption that the cation is involved only in minor changes of
position with no change in energy whilst the carbonate ions are those involived in
major aiterations in the transition to the activated complex. Shannon concludes that
O* is more similar to @, ,.aq, in exothermic reactions and to Q4. in endothermic
reactions. Carbonate decompositions are always endothermic, so it follows that in
this case O* is more like O, oquc- Shannon was able to show that there was reasonable
agreement between values of “a™ calculated from a basis of spectroscopy and those
calculated from the kinetic data for calcite and magnesium carbonate. The theoretical
treatment at present put forward however makes the result independent of the position
of the reactant species in the reactant interface. Obviously an “edge™ position or a
“commer” position would Be a more actve site with a difierent energy content than a
more protected position in the centre of a reaction interface. Incorporation of this
idea into the theory would lead to the @+ value possessing difierest values according
to the position of the activated complex with respect to the geometry of the reaction
interface.

THE COMPENSATION EFFECT

Inspection of the data available especially in carbonate decompositions shows
that the same chemical material may show various values of £ and 4 dependent
upon the conditions of the material and the nature of the 2xperiment. This has caused
many arguments regarding the true or most dependable value of E and 4 which
should be selected from those available in the literature.

- However the compensation effect covers the phenomena whereby a change in
the activation energy is reflected by a compensating change in the pre-exponential
term and allows the above position to be rationalised. It is essentially a series of related
experiments in which there is a linear relationship®® between TAS+ and 4H=*. It
has been-applied to both homogeneous and heterogeneous reactions and the data
calculated from the use of the Arrhenius equation. The concept thar a linear relation-
ship exists between fog A and E is also called the compensation. cﬂ'ect. From these
two statements of the compensation effect, it follows that:

TAS* = RT (logA log ;:) ) , ' (29
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and the difference between 745+ and log A can be calculated. At constant tempera-
ture, it is seen that the log A term differs by a constant term and a factor which would
justify the alternative representation of the compensation effect. It follows however
that to preserve a constant value of A, any change with temperature in log RT/NA
must be compensated by a change in AS* /R and the product T exp (45+) must be
constant. It can however be shown that A is not strictly constant and is a function of
temperature but that the change in A is very small and to within the usual limits
imposed by plotting log k£ against 1/T may be regarded as a constant term.

The compensation effect is merely an experimental observation and many
reports have been published on its significance?' ™ ?*. Garn?" suggests that obedience
of data to the compensation equation may be a consequence of the operation of a
common dominant rate-controlling factor. Zsako?? stresses that the existence of the
linear relationship is indicative of a more general characteristic. However, the
experimental linear relationship recorded whether of fundamental significance or not
is very valuable in describing reacting systems and specifying reactor designs. It
would szem that to avoid suspicion regarding the values of 4 and E used in the
calculations the dx/dr term must be related with the rate of advance of the reaction
interface and this is implicit in the use of the Polanyi-Wigner equation and its sub-
sequent development by Shannon and Cordes. The compensation effect takes the
form;

loeA=mE+ C (G0)
where m is the slope and C the intercept. Cremer?? and Constable?® suggest that the
compensation effect will be shown in a heterogeneous model where the reaction will
occur at different reaction sites. They allow for a *“reaction site™ distribution by the
use of an equation of the form;

RT

Each type of rcaction site is characterised by its own activation energy. Such a
distribution can be imagined in solid-state kinetics where sites on a “corner” would
obviously give rise to different activation energies to sites on “edges’ or in the “faces™
of the reaction interface. It is the combination of individual Arrhenius equations
apphed to each of these sites together with a “weighting™ quc iz <i*= distribution
which produces an overall value found for 4 and E in each experiment and which
upon comparison of experiments in which the site distribution varies produces the
observed compensation effect. The matter is outlined in the papers by Cremer??,
Constable?®, Heuchamps and Duval®*” and Sosnovsky?®. This question of the
distnibution of sites of varying energy arises again when considering kinetic para-
meters calculated from rising temperature experiments.

Rate = k ‘zn, exp ( —EE) G

RISING TEMPERATURE TECHNIQUES FOR CALCULATING KINETIC PARAMETERS

The detailed treatments for rising temperature methods of @qulating kinetic
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parameters have already been reviewed®, but the matter is raised here with regard
to the values obtained for the Arrhenius parameters.

The three basic equations have been set out at the beginning {eqns (1), (2) and
(3)). Combination of egns (1) and (3) gives;

dx  kf(2)
dT B 32)
whence,
dzx
=B
4T )
k= [ @ ] 3

Such a combination would allow a plot or table to be constructed of k against
T. Most investigators however proceed by incorporating the Arrhenius equation to
give;
dx A —E
7= (F) oo (57, ¢

which can be rearranged to give;

ft) = ( ; ) Texp: ('Z—i) - 47 (35)

or

e [_%‘T_] g () - - 6
f(2) B RT

when a plot of log

dz
f(2)

against 1/T gives A and E. However this is not strictly an Arrhenius plot, but a slight
rearrangement gives; :

dx
lOg[f() ﬁ]:logk:logfl—% 7 : (37)

‘This equation is directly analogous to the Arrhenius equation and so plots of log k
against 1/7 can be made and a direct comparison attempted wnth Arrhemus plots
established from a series of isothermal experiments.

Here we concern ourselves with the decomposition of Gu'bonatts asan example.
Dectailed publications on various carbonate systems will be published. However, the
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Fig. 1. Arrhenius plots for carbonate decompositions. Schematic representation of data for iso-
thermal and dsing tcmperature experiments. — - —i—, Isothermal experiments—Range A;
———, rising temperature experiments. Ordinate: log & — log of specific reaction rate constant;
2bscissae: (103 Ty k-1

results of these data are schematically portrayed in Fig. 1. The data are calculated as a
series of Arrhenius plots. The rising temperature experiments often produce two or
more ltnear regions cver a much wider temperature range than the isothermal series
of experiments. All these linear regions each produce characteristic values of E and
A, which all lie on a common compensation plot.

There are certain points which need clarification. The first point is that an
approprnate choice must be made of f(z). In general, most carbonates and many
endothermic oxysalt systems (i.c., in which the decomposition stage is endothermic)
follow a deceleratory mechamsm which results in the calculation of a specific reaction
rate constant which does not differ significantly to that calculated by making the
assumption that the process is first order. Provided therefore that the process is
deceleratory no great error will be involved by proceeding on this assumption but
this can be checked by a single isothermal experiment.

It has also become customary to interpret non-linearity in the appropriate plot
for the rising temperature experiment necessary to calcnlate £ and A as being duoe
to the incorrect choice of the kinetic expression and hence f(z). Non-linear and
two-line Arrhenius plots however also arise from isothermal data**~*3_ The kinetic
data leading to two or three linear regions in the Arrhenius plot for the rising tempera-
wre plots {Fig. 1) in this instance therefore arise from a change in the conditions of
the experiment and are related to the Arrhenius parameters themselves. It is also
clearly seen that the rising temperature £ and A values do not agree with the isothermal
experiments, but it must be stressed do lic on a common compensation plot The
most logical explanation would appear to be that a particular distribution of sites is
involved in the isothermal experiments and another distribution of sites is mitially
operalive in the rising temperature experiments. These site distributions alter dis-
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centinuously as one goes from one linear Arrhenius region to another. This has been

established for carbon oxidations''* *Z and also in some oxides??. It would seem to
be operative in oxysalt systems and particularly for carbonates. It is probable that
the prime factor in altering the distribution of sites of varying energy content, is the
sintering phenomena whereby particles are only fritted together at low temperatures,
are subject to surface diffusion in a higher temperature range and are subject to
bulk diffusion in the highest temperature range. These temperature ranges can be
established quite firmly in terms of the Tammann temperature®®. It is also possible
that the effect of water vapour being evolved with the carbon dioxide in certain
carbonates would also alter the sintering phenomena (usually to accelerate the
process) and cause a change in the distribution of sites of varying energy content. The
acceleratory effect of water vapour on zinc oxide sintering has been firmly established .

From this, it can be seen that we should not necessarily expect rising temperature
expenimenis to produce E and A values which agree with the same parameters
established from isothermal experiments. They may be regarded as the operstive
parameters under the conditions of investigation. Further, we should not expect a
single A and E value to be established from a single TG experiment in all cases. It
is also instructive to plot the data from rising temperature data as an Arrhenius plot
as this facilitates comparison and interpretation. Finally, it is possible thai the
connection between the various A and E values collected on a particular series of

compounds may be establishked by a compensation plot indicative of changes in the
distribution of sites of varying energy.
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